Системы искусственного интеллекта

       

Основные определения


Функционирование многих ИС носит целенаправленный характер . Типичным актом такого функционирования является решение задачи планирования пути достижения нужной цели из некоторой фиксированной начальной ситуации. Результатом решения задачи должен быть план действий - частично-упорядоченная совокупность действий. Такой план напоминает сценарий, в котором в качестве отношения между вершинами выступают отношения 'типа: "цель-подцель" "цель-действие", "действие-результат" и т. п.. Любой путь в этом сценарии, ведущий от вершины, соответствующей текущей ситуации, в любую из целевых вершин, определяет план действий.

Поиск плана действий возникает в ИС лишь тогда, когда она сталкивается с нестандартной ситуацией, для которой нет заранее известного набора действий, приводящих к нужной цели. Все задачи построения плана действий можно разбить на два типа, которым соответствуют различные модели: планирование в пространстве состояний (SS-проблема) и планирование в пространства задач (PR-проблема).

В первом случае считается заданным некоторое пространство ситуаций. Описание ситуаций включает состояние внешнего мира и состояние ИС, характеризуемые рядом параметров. Ситуации образуют некоторые обобщенные состояния, а действия ИС или изменения во внешней среде приводят к изменению актуализированных в данный момент состояний. Среди обобщенных состояний выделены начальные состояния (обычно одно) и конечные (целевые) состояния. SS-проблема состоит в поиске пути, ведущего из начального состояния в одно из конечных. Если, например, ИС предназначена для игры в шахматы, то обобщенными состояниями будут позиции, складывающиеся на шахматной доске. В качестве начального состояния может рассматриваться позиция, которая зафиксирована в данный момент игры, а в качестве целевых позиций - множество ничейных позиций. Отметим, что в случае шахмат прямое перечисление целевых позиций невозможно. Матовые и ничейные позиции описаны на языке, отличном от языка описания состояний, характеризуемых расположением фигур на полях доски.
Именно это затрудняет поиск плана действий в шахматной игре.

При планировании в пространстве задач ситуация несколько иная. Пространство образуется в результате введения на множестве задач отношения типа: "часть - целое", "задача - подзадача", "общий случай - частный случай" и т. п. Другими словами, пространство задач отражает декомпозицию задач на подзадачи (цели на подцели). PR-проблема состоит в поиске декомпозиции исходной задачи на подзадачи, приводящей к задачам, решение которых системе известно. Например, ИС известно, как вычисляются значения sin x и cos x для любого значения аргумента и как производится операция деления. Если ИС необходимо вычислить tg x, то решением PR-проблемы будет представление этой задачи в виде декомпозиции tgx=a =sinx/cosx (кроме л:=л/2+k л).

Дадим классификацию методов, используемых при решении SS- и PR-проблем.

1. Планирование по состояниям. Представление задач в пространстве состояний предполагает задание ряда описаний: состояний, множества операторов и их воздействий на переходы между состояниями, целевых состояний. Описания состояний могут представлять собой строки символов, векторы, двухмерные массивы, деревья, списки и т. п. Операторы переводят одно состояние в другое. Иногда они представляются в виде продукций А=>В, означающих, что состояние А преобразуется в состояние В.

Пространство состояний можно представить как граф, вершины которого помечены состояниями, а дуги-операторами. Если некоторая дуга направлена от вершины ni, к вершине n,, то п, называется дочерней, а nj;-родительской вершинами

Последовательность вершин ni1, ni2, ... ,nik , в которой каждая ni-дочерняя вершина для вершины nij-1 , /=2,..., k, называется путем длиной k от вершины ni1, к вершине nik .

Таким образом, проблема поиска решения задачи <А,В> при планировании по состояниям представляется как проблема поиска на графе пути из A в B. Обычно графы не задаются, а генерируются по мере надобности.

Различаются слепые и направленные методы поиска пути. Слепой метод имеет два вида: поиск вглубь и поиск вширь. При поиске вглубь каждая альтернатива исследуется до конца, без учета остальных альтернатив.




Метод плох для "высоких" деревьев, так как легко можно проскользнуть мимо нужной ветви и затратить много усилий на исследование "пустых" альтернатив. При поиске вширь на фиксированном уровне исследуются все альтернативы и только после этого осуществляется переход на следующий уровень. Метод может оказаться хуже метода поиска влубь, если в графе все пути, ведущие к целевой вершине, расположены примерно на одной и той же глубине. Оба слепых метода требуют большой затраты времени и поэтому необходимы направленные методы поиска.

Метод ветвей и границ. Из формирующихся в процессе поиска неоконченных путей выбирается самый короткий и продлевается на один шаг. Полученные новые неоконченные пути (их столько, сколько ветвей в данной вершине) рассматриваются наряду со старыми, и вновь продлевается на один шаг кратчайший из них. Процесс повторяется до первого достижения целевой вершины, решение запоминается. Затем из оставшихся неоконченных путей исключаются более длинные, чем законченный путь, или равные ему, а оставшиеся продлеваются по такому же алгоритму до тех пор, пока их длина меньше законченного пути. В итоге либо все неоконченные пути исключаются, либо среди них формируется законченный путь, более короткий, чем ранее полученный. Последний путь начинает играть роль эталона и т. д.

Алгоритм кратчайших путей Мура. Исходная вершина x0 помечается числом 0. Пусть в ходе работы алгоритма на текущем шаге получено множество дочерних вершин Г(xi) вершины xi . Тогда из него вычеркиваются все ранее полученные вершины, оставшиеся помечаются меткой, увеличенной на единицу по сравнению с меткой вершины xi, и от них проводятся указатели к xi. Далее, на множестве помеченных вершин, еще не фигурирующих в качестве адресов указателей, выбирается вершина с наименьшей меткой и для нее строятся дочерние вершины. Разметка вершин повторяется до тех пор, пока не будет получена целевая вершина.

Алгоритм Дейкстры определения путей с минимальной стоимостью является обобщением алгоритма Мура за счет введения дуг переменной длины.



Алгоритм Дорана и Мичи поиска с низкой стоимостью. Используется, когда стоимость поиска велика по сравнению со стоимостью оптимального решения. В этом случае вместо выбора вершин, наименее удаленных от начала, как в алгоритмах Мура и Дейкстры, выбирается вершина, для которой эвристическая оценка расстояния до цели наименьшая. При хорошей оценке можно быстро получить решение, но нет гарантии, что путь будем минимальным.

Алгоритм Харта, Нильсона и Рафаэля. В алгоритме объединены оба критерия: стоимость пути до вершины g(x) и стоимость пути от вершины h(x) - в аддитивной оценочной функции f (x) = g (x) + h (x). При условии h(x)<hp(x), где hp(x)- действительное расстояние до цели, алгоритм гарантирует нахождение оптимального пути.

Алгоритмы поиска пути на графе различаются также направлением поиска. Существуют прямые, обратные и двунаправленные методы поиска. Прямой поиск идет от исходного состояния и, как правило, используется тогда, когда целевое состояние задано неявно. Обратный поиск идет от целевого состояния и используется тогда, когда исходное состояние задано неявно, а целевое явно. Двунаправленный поиск требует удовлетворительного решения двух проблем: смены направления поиска и оптимизации "точки встречи". Одним из критериев для решения первой проблемы является сравнение "ширины" поиска в обоих направлениях-выбирается то направление, которое сужает поиск. Вторая проблема вызвана тем, что прямой и обратный пути могут разойтись и чем уже поиск, тем это более вероятно.

2. Планирование по задачам. Этот метод приводит к хорошим результатам потому, что часто решение задач имеет иерархическую структуру. Однако не обязательно требовать, чтобы основная задача и все ее подзадачи решались одинаковыми методами. Редукция полезна для представления глобальных аспектов задачи, а при решении более специфичных задач предпочтителен метод планирования по состояниям. Метод планирования по состояниям можно рассматривать как частный случай метода планирования с помощью редукций, ибо каждое применение оператора в пространстве состояний означает сведение исходной задачи к двум более простым, из которых одна является элементарной.


В общем случае редукция исходной задачи не сводится к формированию таких двух подзадач, из которых хотя бы одна была элементарной.

Поиск планирования в пространстве задач заключается в последовательном сведении исходной задачи к все более простым до тех пор, пока не будут получены только элементарные задачи. Частично упорядоченная совокупность таких задач составит решение исходной задачи. Расчленение задачи на альтернативные множества подзадач удобно представлять в виде И/ИЛИ-графа. В таком графе всякая вершина, кроме концевой, имеет либо конъюнктивно связанные дочерние вершины (И-вершина), либо дизъюнктивно связанные (ИЛИ-вершина). В частном случае, при отсутствии И-вершин, имеет место граф пространства состояний. Концевые вершины являются либо заключительными (им соответствуют элементарные задачи), либо тупиковыми. Начальная вершина (корень И/ИЛИ-графа) представляет исходную задачу. Цель поиска на И/ИЛИ-графе - показать, что начальная вершина разрешима. Разрешимыми являются заключительные вершины (И-вершины), у которых разрешимы все дочерние вершины, и ИЛИ-вершины, у которых разрешима хотя бы одна дочерняя вершина. Разрешающий граф состоит из разрешимых вершин и указывает способ разрешимости начальной вершины. Наличие тупиковых вершин приводит к неразрешимым вершинам. Неразрешимыми являются тупиковые вершины, И-вершины, у которых неразрешима хотя бы одна дочерняя вершина, и ИЛИ-вершины, у которых неразрешима каждая дочерняя вершина.

Алгоритм Ченга и Слейгла. Основан на преобразовании произвольного И/ИЛИ-графа в специальный ИЛИ-граф, каждая ИЛИ-ветвь которого имеет И-вершины только в конце. Преобразование использует представление произвольного И/ИЛИ-графа как произвольной формулы логики высказываний с дальнейшим преобразованием этой произвольной формулы в дизъюнктивную нормальную форму. Подобное преобразование позволяет далее использовать алгоритм Харта, Нильсона и Рафаэля.

Метод ключевых операторов. Пусть задана задача <А, В> и известно, что оператор f обязательно должен входить в решение этой задачи.


Такой оператор называется ключевым. Пусть для применения f необходимо состояние С, а результат его применения есть f(с). Тогда И-вершина <A,В> порождает три дочерние вершины: <A, С>, <С, f(c}> и <f(с), В>, из которых средняя является элементарной задачей. К задачам <A, С> и <f(с), В> также подбираются ключевые операторы, и указанная процедура редуцирования повторяется до тех пор, пока это возможно. В итоге исходная задача <A, В> разбивается на упорядоченную совокупность подзадач, каждая из которых решается методом планирования в пространстве состояний.

Возможны альтернативы по выбору ключевых операторов, так что в общем случае будет иметь место И/ИЛИ-граф. В большинстве задач удается не выделить ключевой оператор, а только указать множество, его содержащее. В этом случае для задачи <А, В> вычисляется различие между A и В, которому ставится в соответствие оператор, устраняющий это различие. Последний и является ключевым.

Метод планирования общего решателя задач (ОРЗ). ОРЗ явился первой наиболее известной моделью планировщика. Он использовался для решения задач интегрального исчисления, логического вывода, грамматического разбора и др. ОРЗ объединяет два основных принципа поиска:

анализ целей и средств и рекурсивное решение задач. В каждом цикле поиска ОРЗ решает в жесткой последовательности три типа стандартных задач: преобразовать объект A в объект В, уменьшить различие D между A и В, применить оператор f к объекту A. Решение первой задачи определяет различие D второй - подходящий оператор f, третьей - требуемое условие применения С. Если С не отличается от A, то оператор f применяется, иначе С представляется как очередная цель и цикл повторяется, начиная с задачи "преобразовать A в С". В целом стратегия ОРЗ осуществляет обратный поиск - от заданной цели В к требуемому средству ее достижения С, используя редукцию исходной задачи <A, В> к задачам <A, С> и <С, В>.

Заметим, что в ОРЗ молчаливо предполагается независимость различий друг от друга, откуда следует гарантия, что уменьшение одних различий не приведет к увеличению других.



3. Планирование с помощью логического вывода. Такое планирование предполагает: описание состояний в виде правильно построенных формул (ППФ) некоторого логического исчисления, описание операторов в виде либо ППФ, либо правил перевода одних ППФ в другие. Представление операторов в виде ППФ позволяет создавать дедуктивные методы планирования, представление операторов в виде правил перевода - методы планирования с элементами дедуктивного вывода.

Дедуктивный метод планирования системы QA3 , ОРЗ не оправдал возлагавшихся на него надежд в основном из-за неудовлетворительного представления задач. Попытка исправить положение привела к созданию вопросно-ответной системы QA3. Система рассчитана на произвольную предметную область и способна путем логического вывода ответить на вопрос: возможно ли достижение состояния В из A? В качестве метода автоматического вывода используется принцип резолюций. Для направления логического вывода QA3 применяет различные стратегии, в основном синтаксического характера, учитывающие особенности формализма принципа резолюций. Эксплуатация QA3 показала, что вывод в такой системе получается медленным, детальным, что несвойственно рассуждениям человека.

Метод продукций системы STRIPS . В этом методе оператор представляет продукцию Р, А=>В, где Р, А и В-множества ППФ исчисления предикатов первого порядка, Р выражает условия применения ядра продукции А=>В, где В содержит список добавляемых ППФ и список исключаемых ППФ, т. е. постусловия. Метод повторяет метод ОРЗ с тем отличием, что стандартные задачи определения различий и применения подходящих операторов решаются на основе принципа резолюций. Подходя-. щий оператор выбирается так же, как в ОРЗ, на основе принципа "анализ средств и целей". Наличие комбинированного метода планирования позволило ограничить процесс логического вывода описанием состояния мира, а процесс порождения новых таких описаний оставить за эвристикой "от цели к средству ее достижения".

Метод продукций, использующий макрооператоры .


Макрооператоры- это обобщенные решения задач, получаемые методом STRIPS. Применение макрооператоров позволяет сократить поиск решения, однако при этом возникает проблема упрощения применяемого макрооператора, суть которой заключается в выделении по заданному различию его требуемой части и исключении из последней ненужных операторов.

Метод иерархической системы продукций решателя ABSTRIPS . В этом методе разбиение пространства поиска на уровни иерархии осуществляется с помощью детализации продукций, используемых в методе STRIPS. Для этого каждой литере ППФ, входящей в множество Р условий применения продукции, присваивается вес j, j=0, k, и на i-м уровне планирования, осуществляемом методом системы STRIPS, учитываются лишь литеры веса j. Таким образом, на k-ом уровне продукции описываются наименее детально, на нулевом-наиболее детально как в методе системы STRIPS. Подобное разбиение позволяет для планирования на j-м уровне использовать решение (j+1)-го уровня как скелет решения j-го уровня, что повышает эффективность поиска в целом.

Усовершенствованный метод планирования Ньюэлла и Саймона. В основу метода положена следующая идея дальнейшего совершенствования метода ОРЗ: задача решается сначала в упрощенной (за счет ранжировки различий) области планирования, а затем делается попытка уточнить решение применительно к более детальной, исходной проблемной области.

 
 


Содержание раздела