Системы искусственного интеллекта




Пример формализации качественных знаний


При анализе ситуации эксперт рассуждает в семантическом пространстве (пространстве шкал), в котором ситуации соответствует оцененный образ. Семантическое пространство аналогично субъективному пространству ощущений в котором формируется внутренний образ внешних сигналов и возникают субъективные связи между свойствами (признаками, параметрами), В зависимости от индивидуального восприятия одно и то же значение признака может быть оценено по-разному. Однако для конкретного индивидуума оцененная ситуация является инвариантом относительно определенного класса ситуаций. Следовательно при отождествлении реальных значений признаков с семантическим образом существенной является форма нечеткого отображения пространства признаков в семантическое пространство.

Отображение любой ситуации на единичный интервал происходит таким образом, что точка интервала характеризует степень проявления некоторого свойства (0 соответствует отсутствию свойства, 1-интересующему нас максимальному проявлению свойства). При построений функции принадлежности используется модель измерений, которая определяется двумя параметрами: типом шкалы принадлежности, на которую отображается информация от эксперта" и типом измерения (прямой или косвенный). Шкала называется фундаментальной, если она допускает прямое взаимодействие множества U и того нечеткого свойства, которое нас интересует. Такая шкала дает возможность прямого измерения субъективного восприятия нечетких множеств на U со свойствами понятия а [Yager, 1982; Norwich et aL, 1984]. В табл. 2.1 приведены наиболее часто встречающиеся типы шкал и связанные с ними аксиомы.

Процесс формализации знаний, полученных у эксперта, состоит из следующих шагов: выбор метода измерения нечеткости, получение исходных данных посредством опроса эксперта, реализация алгоритма построения функции принадлежности. Известные методы формализации нечеткости систематизированы в табл. 2.2. В процессе реализации метода используются следующие характеристики: тип метода измерения (П - прямой, К - косвенный); интерпретация принадлежности (ВЧ-вероятность частотная, ВС-вероятность субъективная, В - возможность, Д - детерминированная); процедура получения исходных данных (ОФ - определение функции принадлежности в виде формул, 03-назначение значений принадлежности" ОДН-оценивание типа "да-нет"; ОПО- оценивание пар объектов; Р-ранжирование, РП-ранжирование пар объектов, ПС-попарное сравнение); измерений (Ф-фундаментальное, П-производное)'. тип шкалы (Н-номинальная" П-порядковая, И-интервальная, О- отношений, А - абсолютная),

Приведем пример измерения нечеткости. Множество оценок сходства приведено в табл. 2.3. В [Горячев и др., 1984] предполагается, что при оценке сходства используются числовые значения из табл. 2.3. Процедура формирования значений функции принадлежности следующая: I) фиксация понятия "Сходство";

2) ранжирование пар оценок сходства из табл. 2.3 по сходству в парах (чем больше сходство, тем меньше ранг); матрица сравнения пар оценок сходства приводится в табл. 2.4, 2 5 соответственно в строчной и матричной форме.


 




Содержание  Назад  Вперед