Философские аспекты проблемы систем ИИ



         

Метод потенциальных функций - часть 2



, (ф. 2)

которая положительна для объектов одного образа и отрицательна для объектов другого.

В качестве потенциальной функции рассмотрим функцию вида


,(ф. 3)

где j j(X) — линейно независимая система функций; l j — действительные числа, отличные от нуля для всех j = 1, 2, … ; Xi — точка, соответствующая i-му объекту из обучающей последовательности. Предполагается, что j j(X) и U(X, Xi) ограничены при XI V1 E V2; y j (X)=l jj j(X).

В процессе обучения предъявляется обучающая последовательность и на каждом n-м такте обучения строится приближение fn(X) характеризуется следующей основной рекуррентной процедурой:


, (ф. 4)

Разновидности алгоритмов потенциальных функций отличаются выбором значений qn и rn, которые являются фиксированными функциями номера n. Как правило, qn? 1, а rn выбирается в виде:


, (ф. 5)

где S(fn, f) — невозрастающие функции, причем



(ф. 6)

Коэффициенты g n представляют собой неотрицательную числовую последовательность, зависящую только от номера n. Кроме того,


и
(например, g n=1/n) или g n=const.

Разработано несколько вариантов алгоритмов потенциальных функций, различие между которыми состоит в выборе законов коррекции разделяющей функции от шага к шагу, т. е. в выборе коэффициентов rn. Приведем два основных алгоритма потенциальных функций.

1. Будем считать, что f0(X)? 0 (нулевое приближение). Пусть в результате применения алгоритма после n-го шага построена разделяющая функция fn(X), а на (n+1)-м шаге предъявлено изображение Xn+1, для которого известно действительное значение разделяющей функции f(Xn+1). Тогда функция fn+1(X) строится по следующему правилу:


(ф. 7)

2. Во втором алгоритме также принимается, что f0(X)? 0. Переход к следующему приближению, т. е. переход от функции fn(X) к fn+1(X), осуществляется в результате следующей рекуррентной процедуры:


(ф. 8)

где l — произвольная положительная константа, удовлетворяющая условию l =(1/2)? max(X, Xi).

Если в (ф. 3) принять


,

и предположить, что xv может иметь только два значения 0 и 1, то в этом случае алгоритм потенциальных функций будет совпадать со схемой перцептрона с индивидуальными порогами А-элементов и с коррекцией ошибок.Поэтому многие теоретические положения метода потенциальных функций могут быть успешно применены для анализа некоторых перцептронных схем.







Содержание  Назад  Вперед