Философские аспекты проблемы систем ИИ



         

Поиск оптимальных структур - часть 2


Объемы этих областей могут быть очень малыми по сравнению с объемами гиперпараллелепипедов (2). Однако, несмотря на такую сложность, большинство задач параметрической оптимизации можно вполне удовлетворительно решить существующими методами.

Постановка задачи структурной оптимизации. Среди задач поиска оптимальных ТР рассмотрим только подкласс, называемый задачами поиска оптимальных многоэлементных структур ТО или коротко - задач структурной оптимизации.

Строгое определение понятия структуры ТО дать затруднительно, поэтому укажем лишь некоторые инженерные и математические свойства, которые связаны с этим понятием.

С инженерной точки зрения разные структуры рассматриваемого класса ТО отличаются числом элементов, самими элементами, их компоновкой, характером соединения между элементами и т. д. Понятие структуры в большей мере аналогично понятию технического решения, данному в п. 3 гл. 1, однако имеются различия, которые вызывают необходимость введения этого дополнительного понятия. Во-первых, в рамках заданного физического принципа действия, как правило, существует более широкое множество ТР по сравнению с множеством, которое можно формально описать при постановке и решений задачи структурной оптимизации. Во-вторых, между отдельными ТР подразумеваются более существенные различия по конструктивным признакам, чем различия между отдельными структурами, иногда формально отличающимися значениями несущественных дискретных переменных. Например, на рис. 64 показаны две фермы моста с решеткой в виде равнобедренных треугольников, которые имеют одинаковые ТР, но разные структуры. Короче говоря, для заданного физического принципа Действия множества возможных ТР и множество возможных структур (для рассматриваемой задачи структурной оптимизации) пересекаются, но, как правило, не совпадают.

При этом одно ТР можно представить несколькими близкими структурами.

С математической точки зрения два варианта ТО будут иметь различную структуру, если соответствующие им задачи параметрической оптимизации по одному и тому же критерию качества и при условии выбора оптимальных параметров каждого элемента структуры имеют различные наборы переменных (1) и функции (3), т.


Содержание  Назад  Вперед