Философские аспекты проблемы систем ИИ



         

Пример: задача поиска пути в лабиринте - часть 2


L is J+1,

можем_идти(а(I, L), Были),

путь(а(I, L), Р, [а(I, L)| Были]).

/* в позицию a(I, J) можно попасть при

/* условии, что там нет стены и мы

/* не побывали в ней прежде

можем_идти(а(I, J)), Были) :-

отсутств_стена(I, J),

not (принадлежит (a (I, J), Были)).

Для того чтобы понять, каким образом процедура ищет путь к выходу, рассмотрим процесс согласования запроса с описанием лабиринта, описанного выше:

?-путь(а(4,2), Р, [а(4.2)]).

Выходом из лабиринта является позиция выход (3,1).

Выбор первого утверждения не приводит к согласованию целевого утверждения, поскольку а (4,2) - не выход. Во втором утверждении делается попытка найти путь в северном направлении, т.е. согласовать целевое утверждение

путь(а(3, 2), Р2, [а(3, 2), а(4, 2)]).

Целевое утверждение не удается согласовать с первым утверждением

путь(а(3, 2), Р2, [а(3, 2), а(4, 2)])

так как а (3,2) не является выходом. Во втором утверждении предпринимается попытка найти путь, двигаясь на север, т.е. согласовать целевое утверждение

путь(а(2,2), РЗ, [а(2, 2), а(3, 2), а(4, 2)]).

Ни одно из утверждений не может согласовать

путь(а(2, 2), РЗ, [а(2, 2), а(3, 2), а(4, 2)]).

Первое утверждение - потому, что а (2, 2) не является выходом, второе - потому, что северная позиция является стеной, третье утверждение - потому, что в южной позиции мы уже побывали, а четвертое и пятое утверждения - потому, что западная и восточная границы - это стены.

Неудача в согласовании

путь(а(2, 2), РЗ, [а(2, 2), а(3, 2), а(4, 2)])

заставляет Пролог-систему вернуться в ту точку, где было выбрано второе утверждение при попытке согласовать

путь(а(3, 2), Р2, [а(3, 2), а(4, 2)]).

Решение пересматривается и выбирается третье утверждение.

В третьем утверждении осуществляется попытка найти путь, двигаясь на юг, но она оказывается неудачной, поскольку мы уже побывали в позиции а (4, 2). Тогда, чтобы согласовать

путь(а(3, 2), Р2, [а(3, 2), а(4, 2)]),

выбирается четвертое утверждение. Мы успешно находим путь, двигаясь в западном направлении к позиции а(3,1), которая и является выходом.Рекурсия сворачивается, и в результате получается путь

Р=[а(4, 2),а(3, 2), а(3,1)]

другие решения(да/нет)? да

Других решений нет

Альтернативный путь

[a(4,2), a(3,2), a(2,2), a(3,2), a(3,1)]

мы получить не можем, потому что не разрешается дважды бывать в одной и той же позиции.

Описанная процедура не обязательно находит кратчайший путь к выходу. Кратчайший путь можно найти, генерируя альтернативные пути с помощью вызова состояния неудачи и запоминая кратчайший из них.







Содержание  Назад  Вперед