Основы проектирования систем искусственного интеллекта

       

Метод наименьших квадратов


Перед тем, как начинать рассмотрение МГУА, было бы полезно вспомнить или узнать впервые метод наименьших квадратов — наиболее распространенный метод подстройки линейно зависимых параметров.

Рассмотрим для примера МНК для трех аргументов:

Пусть функция T=T(U, V, W) задана таблицей, то есть из опыта известны числа U­i, Vi, Wi, Ti ( i = 1, … , n). Будем искать зависимость между этими данными в виде:

                                                                                   (ф.  11)

где a, b, c — неизвестные параметры.

Подберем значения этих параметров так, чтобы была наименьшей сумма квадратов уклонений опытных данных Ti и теоретических Ti = aUi + bVi + cWi, то есть сумма:

                                                               (ф.  12)

Величина s является функцией трех переменных a, b, c. Необходимым и достаточным условием существования минимума этой функции является равенство нулю частных производных функции s по всем переменным, то есть:

                                                                                    (ф.  13)

Так как:

                                                                  (ф.  14)

то система для нахождения a, b, c будет иметь вид:

                                                         (ф.  15)

Данная система решается любым стандартным методом решения систем линейных уравнений (Гаусса, Жордана, Зейделя, Крамера).

Рассмотрим некоторые практические примеры нахождения приближающих функций:

  y = ax2 + bx + g

Задача подбора коэффициентов a, b, g сводится к решению общей задачи при T=y, U=x2, V=x, W=1, a=a, b=b, g=c.

  f(x, y) = asin(x) + bcos(y) + g/x

Задача подбора коэффициентов a, b, g сводится к решению общей задачи при T=f, U=sin(x), V=cos(y), W=1/x, a=a, b=b, g=c.

Если мы распространим МНК на случай с m параметрами,

                                                                               (ф.  16)



то путем рассуждений, аналогичных приведенным выше, получим следующую систему линейных уравнений:

                                                                (ф.  17)

где

,



Содержание раздела